Shown below is a scheme that illustrates why the decomposition of NCO may be promoted by polynuclear species via the successive weakening of the N-C bond.

Structures IV and V are documented,³² but examples of NCO bridging more than two metals either as a mono, di, or trihapto ligand are unknown. The reverse reaction of a nitrido cluster to form an isocyanate would not occur under mild conditions but was clearly demonstrated at high CO pressure. [Ru₆N- $(CO)_{16}$ was dissolved in THF and the solution pressurized to 3000 psig CO at 70 °C for 3 h. The infrared spectrum of the solution observed after the pressure was released revealed absorbances characteristic of a mixture of [Ru₅N(CO)₁₄]⁻ and $[Ru_4(NCO)(CO)_{13}]^-$. In particular, the sharp peak at 2189 cm⁻¹ confirms the re-formation of a coordinated isocyanate. The details of this unique method of forming carbon-nitrogen bonds and the reactivity of $[Ru_6N(CO)_{16}]^-$ are being studied.

Acknowledgment. We gratefully acknowledge the National Science Foundation for support of this work (Grant No. CHE8106096). We also thank Professor John Shapley for early communication of this results on the nitrosylation of $[Ru_6(CO)_{18}]^{2-}$.

Supplementary Material Available: Lists of atomic coordinates, thermal parameters, observed and calculated structure factors, and distances and angles (12 pages). Ordering information is given on any current masthead page.

- Bradley, J. S.; Ansell, G. B.; Leonowicz, M. E.; Hill, E. W. J. Am. (27) Chem. Soc. 1981, 103, 4968-4970.
- Keister, J. B.; Horling, T. L. Inorg. Chem. 1980, 19, 2304-2307.
- Davis, J. H.; Beno, M. A.; Williams, J. M.; Zimmie, J.; Tachikawa, M.; (29) Muetterties, E. L. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 668-671.
- (30) Sievert, A. C.; Strickland, D. S.; Shapley, J. R.; Steinmetz, G. R.; Geoffroy, G. L. Organometallics 1982, 1, 214-215.
- Arce, A. J.; Deeming, A. J. J. Chem. Soc., Chem. Commun. 1982, (31)364-365.
- (32) Norbury, A. H. Adv. Inorg. Chem. Radiochem. 1975, 17, 231-386. (33) NSF Predoctoral Fellow, 1982-1985.

Department of Chemistry	4	Margaret L. Blohm ³³
University of Minnesota		Douglas E. Fjare
Minneapolis, Minnesota	55455	Wayne L. Gladfelter*

Received December 14, 1982

Trivacant Heteropolytungstate Derivatives. 2. Synthesis, Characterization, and ¹⁸³W NMR of $P_4W_{30}M_4(H_2O)_2O_{112}^{16-}$ (M = Co, Cu, Zn)

Sir:

Recently^{1a} we described the high-yield, rational synthesis and full characterization of the M = Co, Cu, Zn disubstituted, tri(tungsten)vacant^{2a} heteropolytungstates B-P₂W₁₈M₄-

 $(H_2O)_2O_{68}^{10-}$. As a result of these studies, we concluded that an important implication is that $B-P_2W_{18}M_4(H_2O)_2O_{68}^{10-}$ is not unique but rather is just the first member^{1b} of a previously unrecognized class of massive, disubstituted, trivacant heteropolytungstate dimers.

Herein we report the synthesis, characterization, and ${}^{31}P$ and ¹⁸³W NMR of B-P₄W₃₀M₄(H₂O)₂O₁₁₂¹⁶⁻ (M = Co, Cu, Zn), thereby providing the second member of this class of heteropolytungstates. The results described below fortify our earlier preliminary conclusion^{1a} that a B-type^{2b} trivacant heteropolytungstate is a key structural requirement for the formation of this class of heteropolytungstates. The results also support a single structural assignment from among the 16 possible structural isomers and correct the previous misformulation of these complexes³ as " $P_2W_{16}M_2(H_2O)_2O_{60}^{10-"}$ "

The trivacant heteropolytungstate starting material, α - $Na_{12}P_2W_{15}O_{56} \cdot xH_2O$ (previously thought to be α - $Na_{12}P_2W_{16}O_{59}$,^{3a} was prepared as described in the literature^{3b} by base degradation of α -K₆P₂W₁₈O₆₂. The Co, Cu, and Zn derivatives of α -P₂W₁₅O₅₆¹²⁻ were prepared in 77-88% yields from Co(NO₃)₂·6H₂O, CuCl₂·2H₂O, and ZnBr₂ in 1 M NaCl or in an acetate buffer.^{3d} In the case of the Zn complex, 0.56 g (2.0 equiv) of ZnBr₂ was dissolved in 50 mL of 1 M NaCl followed by 5.0 g of $Na_{12}P_2W_{15}O_{56}$ and gentle heating and stirring to obtain a homogeneous solution. Cooling overnight at 5 °C yielded 4.44 g (88%) of white crystalline solid, which was dried at 80 °C under vacuum for ≤ 0.5 h but not for longer times or at higher temperatures as it was discovered, after considerable experimentation, that more vigorous drying produces a product with different ³¹P and ¹⁸³W NMR data⁴ (vide infra) via an apparent solid-state isomerization reaction.⁵ The white crystalline solid was formulated as the disubstituted dimer $Na_{16}[P_2W_{15}Zn_2(H_2O)O_{56}]_2 = Na_{16}P_4W_{30}Zn_4(H_2O)_2$ O_{112} on the basis of a $\pm 0.4\%$ Na, P, W, Zn elemental analysis, molecular weight measurements (M_r (calcd) for $P_4W_{30}Zn_{4^-}$ $(H_2O)_2O_{112}^{16-} = 7728; M_r(obsd) = 7652)$ obtained by using an ultracentrifuge and the sedimentation equilibrium method,⁶ and the ³¹P and ¹⁸³W NMR data presented below.

In the case of the Co and Cu derivatives, 4.20 g (83%) of a dark green powder ($\lambda_{max}(H_2O) = 570 \text{ nm}$) and 3.92 g (77%) of light green-yellow crystals $(\lambda_{max}(H_2O) = end absorption$ beginning at 600 nm) were formed, respectively. Significantly, the distinctive⁷ $\lambda_{max} = 570$ nm of the cobalt derivative of $P_2W_{15}O_{56}^{12-}$ is identical with the $\lambda_{max} = 570$ nm of the $PW_9O_{34}^{0-}$ -derived dimer, $[PW_9Co_2(H_2O)O_{34}]_2^{10-}$, indicating a very similar ligand field and thus primary coordination

- Major NMR peaks: ³¹P in D₂O δ = -3.43, -3.90, -4.01, -12.27; ¹⁸³W in D₂O δ = -122.1, -132.3, -152.6, -157.8, -180.1, -183.4, -186.7, -237.3, -267.4, -272.4, -272.8.
- (5) Finke, R. G.; Droege, M. W., unpublished results.
 (6) Chervenka, C. H. "A Manual of Methods for the Analytical Ultracentrifuge"; Spinco Division of Beckman Instruments: Palo Alto, CA, 1969.
- (a) The following monosubstituted heteropolytungstates appear at shorter wavelengths: $P_2W_{17}Co(H_2O)O_{61}^{10-} (\lambda_{max}(H_2O) = 540-550 \text{ nm})$ ^{3b} $PW_{11}Co(H_2O)O_{39}^{3-} (\lambda_{max}(H_2O) = 540, 526, 505 \text{ (sh) nm})$.^{7b} (b) Komura, A.; Hayashi, M.; Imanaga, H. *Bull. Chem. Soc. Jpn.* **1976**, 49, 87.

⁽¹⁾ H. T., Jr.; Showell, J. S.; Tourné, G. F.; Tourné, C. M. J. Chem. Soc. Chem. Commun. 1973, 139.

⁽a) $P_2W_{15}O_{56}^{12-}$ and $PW_9O_{34}^{5-}$ are derived by formally removing a "W₃O₆⁶⁺ⁿ unit from the saturated tungstates $P_2W_{18}O_{62}^{5-}$ and $PW_{12}O_{40}^{3-}$, respectively, and hence are referred to as tri(tungsten)va-(2) cant, or just trivacant, heteropolytungstates. (b) For a discussion of A. B, α , and β isomerism see: Massart, R.; Contant, R.; Fruchart, J. M.; Ciabrini, J. P.; Fournier, M. Inorg. Chem. 1977, 16, 2916.

⁽a) The $Na_{12}P_2W_{15}O_{56}$, xH_2O preparation used was that listed under^{3b} " α -Na₁₂P₂W₁₆O₅₉". In a subsequent paper,^{3c} it is noted that "new samples (of "Na₁₂P₂W₁₆O₅₉") agree with Na₁₂P₂W₁₅O₅₆, xH_2O ". The samples (of $Ma_{12}F_2$ w₁₆O₅₉) agree with $Na_{12}F_2$ w₁₅O₅₆C₄T₁₂O. The data presented in the text strongly suggest that this material is primarily, but maybe not completely, $Na_{12}P_2W_{15}O_{56}$ ·H₂O. (b) Contant, R.; Ciabrini, J. P. J. Chem. Res., Miniprint 1977, 2601; J. Chem. Res., Synop. 1977, 222. (c) Contant, R.; Ciabrini, J. P. J. Inorg. Nucl. Chem. 1981, 43, 1525. (d) Use of an acetate buffer produced identical $P_4W_{30}M_4(H_2O)_2O_{112}^{6-}$ by ³¹P and ¹⁸³W NMR and elemental analysis (M = 7.2⁺) M = Zn

Figure 1. (A) Coordination polyhedra representation of $P_4W_{30}M_4(H_2O)_2O_{112}^{16-}$ (M = Co, Cu, Zn). The four central octahedra (only three are easily visible) are the MO_6 (M = Co, Cu, Zn) octahedra, and the circles represent the two M^{2+} -bound waters. The two $P_2W_{15}O_{56}^{12-}$ units, with their internal (dark) PO_4^{3-} tetrahedra, lie above and below the four central octahedra and have eight chemical shift inequivalent tungstens labeled $a_1, a_2, a_3, b_1, b_2, b_3, c_1, and c_2$. The C_{2k} symmetry isomer shown is labeled¹¹ $\alpha\beta\beta\alpha$. (B) idealized ball-and-stick representation of $P_4W_{30}M_4(H_2O)_2O_{112}^{16-}$, where the central, filled circles represent M (Co, Cu, Zn), the shaded circles represent oxygen, and the open circles represent W. This figure shows only the molecule's connectivity where, for simplicity's sake, no attempt was made to accurately portray the W-O-W, O-W-O and other angles, for example.

environment for the Co in the two complexes. The filtrate from the cobalt derivative showed a broad $\lambda_{max} = 540-550$ nm characteristic of^{3b} P₂W₁₇Co(H₂O)O₆₁¹⁰. From the ¹⁸³W NMR⁸ and ³¹P NMR⁹ spectra of the dia-

From the ¹⁸³W NMR⁸ and ³¹P NMR⁹ spectra of the diamagnetic zinc derivative, the structure of $P_4W_{30}Zn_4$ - $(H_2O)_2O_{112}^{16-}$ was shown to be a C_{2h} symmetry dimer, $[P_2W_{15}Zn_2(H_2O)O_{56}]_2^{16-}$, analogous to the C_{2h} symmetry dimer, $[PW_9Zn_2(H_2O)O_{34}]_2^{10-}$, we previously described.¹⁸ The ¹⁸³W and ³¹P NMR spectra were both recorded on a Nicolet Technology NT-360 system with use of the instrumental parameters detailed in footnote 10. Eight ¹⁸³W NMR reso-

(9) A summary of "P NMR data for heteropolytungstates has appeared."
 (10) ¹⁸³W NMR spectra were recorded in 10-mm tubes at a spectral frequency of 15.042 MHz and a pulse width of 40.0 μs, with a repetition rate of 2 s and a D₂O lock. ³¹P NMR spectra were recorded in 12-mm tubes at a spectral frequency of 146.161 MHz and a pulse width of 16.0 μs, with a pulse delay of 5.0 s and a D₂O lock. ³¹P chemical shifts in δ are reported relative to a sealed capillary of 85% H₃PO₄ supported in the center of the 12-mm NMR tube.

Figure 2. The 15.04-MHz ¹⁸³W NMR spectrum of 0.1 M $P_4W_{30}Zn_4(H_2O)_2O_{112}^{16-}$ in D_2O acquired through ca. 7×10^4 scans over ca. 40 h. Chemical shift values and discussion are provided in the text. ²J_{W-W} coupling^{8f,ij} is clearly visible at the base of the major peaks and has been used to assign most of the observed resonances.⁵

nances were observed for 0.10 M Na₁₆[P₄W₃₀Zn₄(H₂O)₂O₁₁₂] in D₂O at 40 °C: δ (upfield of saturated Na₂WO₄·2H₂O in D₂O) = -150.4, -160.5, -162.0, -180.0, -185.0, -238.2, -243.4, -244.7 (Figure 2), with relative intensities 1:2:2:2:2:2:2:2:2 within experimental error for a total of 15 tungstens. The ¹⁸³W NMR data and P₄W₃₀Zn₄(H₂O)₂O₁₁₂¹⁶molecular formula require a C_{2h} symmetry, dimer formulation, [P₂W₁₅Zn₂(H₂O)O₅₆]₂¹⁶-, such as the structure shown in Figure 1A with its 8 types of tungstens, a₁, a₂, a₃, b₁, b₂, b₃,

^{(8) (}a) Harris, R. K., Mann, B. E., Eds. "NMR and the Periodic Table"; Academic Press: New York, 1978. (b) Brevard, C.; Granger, P. "Handbook of High Resolution Multinuclear NMR"; Wiley-Interscience: New York, 1981. (c) Acerete, R.; Hammer, C. F.; Baker, L. C. W. J. Am. Chem. Soc. 1979, 101, 267; 1982, 104, 5384. (d) Banck, J.; Schwenk, A. Z. Phys. B 1975, 20, 75. (e) Jeannin, Y.; Martin-Frére, J. J. Am. Chem. Soc. 1981, 103, 1664. (f) Lefebvre, J.; Chauveau, F.; Doppelt, P.; Brevard, C. Ibid. 1981, 103, 4589. (g) Gansow, O. A.; Ho, R. K. C.; Klemperer, W. G. J. Organomet. Chem. 1980, 187, C27. (b) Accrete, R.; Harmalker, S.; Hammer, C. F.; Pope, M. T.; Baker, L. C. W. J. Chem. Soc., Chem. Commun. 1979, 777. (i) Domaille, P. J.; Knoth, W. H. Inorg. Chem., in press. (j) Knoth, W. H.; Domaille, P. J.; Roe, D. C. Inorg. Chem. 1983, 22, 198. (k) Reference 1.
(9) A summary of ³¹P NMR data for heteropolytungstates has appeared.^{2b} (10) ¹⁸³W NMR spectra were recorded in 10-mm tubes at a spectral fremency of 15 042 MHz and a nulse width of 40.0 us. with a repetition

c₁, and c₂. Of the 16 possible isomeric $[P_2W_{15}Zn_2-(H_2O)O_{56}]_2^{16-}$ dimers, only 3 other C_{2h} symmetry isomers are possible although they are less consistent with the observed ³¹P and other data.¹¹

The ³¹P NMR data provide further confirmation of the structure shown in Figure 1 and especially for the B-type structure, ^{2b} where the phosphate connected to the a_1 , a_2 , and a_3 tungstens has a P–O bond (phosphate apex) pointing toward the four central Co, Cu, or Zn MO₆ octahedra. For 0.01 M $[P_2W_{15}Zn_2(H_2O)O_{56}]_2^{16-}$ in D₂O, the ³¹P NMR showed only two peaks, δ (upfield of 85% H₃PO₄) = -4.31 and -14.30, similar to the δ = -4.5 ± 0.1 resonance for $[PW_9M_2-(H_2O)O_{34}]_2^{10-}$ (M = Zn) with its crystallographically determined^{1b} (M = Co) C_{2h} symmetry, B-type structure and to the δ = -12.7 peak observed⁹ for α -P₂W₁₈O₆₂⁶⁻. The data allow assignment of the δ = -4.31 resonance to the phosphorus atom surrounded by tungstens a_1 , a_2 , and a_3 and connected to the central ZnO₆ octahedra and the -14.30 resonance to the other phosphorus surrounded by tungstens b_1 , b_2 , b_3 , c_1 , and c_2 .

All of the above results as well as the literature data and additional ³¹P and ¹⁸³W NMR studies cited below require that the complexes previously thought^{3b} to be "P₂W₁₆M₂-(H₂O)₂O₆₀¹⁰⁻" on the basis of elemental analysis, a $M = Co^{2+}$ titration, and ³¹P NMR data are incorrect and should be reformulated as [P₂W₁₅M₂(H₂O)O₅₆]₂¹⁶⁻ described herein. First and foremost our molecular weight measurements

 $(M_{\rm r}({\rm obsd}) = 7652)$ rule out a "P₂W₁₆M₂(H₂O)₂O₆₀¹⁰⁻" $(M_r(\text{calcd}) = 4445)$ formulation although it is noteworthy that a publishable ±0.4% P, W, M analysis cannot easily distinguish between the two formulations.¹² Second, the literature λ_{max} = 570 nm^{3b} for M = Co²⁺ and the ³¹P δ = -4.4 and -14.05 (M = Zn²⁺)⁹ reported for "P₂W₁₆M₂(H₂O)₂O₆₀¹⁰⁻" are identical within experimental error with the $\lambda_{max} = 570$ nm (M = Co²⁺) and $\delta = -4.3$, -14.3 (M = Zn²⁺) values for $P_4W_{30}M_4(H_2O)_2O_{112}^{16-}$. Finally, a sample of " $P_2W_{16}Zn_2^{-1}$ " $(H_2O)_2O_{60}^{10-m}$ was prepared in acetate buffer^{3d} exactly as described in the literature and examined both in the "crude" solution and after the crystallization step by ³¹P and ¹⁸³W NMR, respectively. Exactly and only the resonances described above for $P_4W_{30}Zn_4(H_2O)_2O_{112}^{16-}$ were observed, ruling out rapid solution degradations such as $2P_2W_{16}Zn_2(H_2O)_2O_{60}^{10-10-10-10}$ $\rightarrow P_4 W_{30} Zn_4 (H_2 O)_2 O_{112}^{16-} + 2WO_4^{2-} (not observed) + 2H_2 O.$ Clearly there is no evidence for " $P_2W_{16}M_2(H_2O)_2O_{60}^{10-"}$ " complexes where M = divalent cations although we note that with higher valent M = V(V),^{13a} Mo(VI),^{3c} or PhSn(IV)^{13b} $P_2W_{16}M_2O_{62}^{n-}$ and $(PhSn)_2[P_2W_{16}O_{60}]^{8-}$, respectively, have been described.

In summary, the second member of a class of massive, disubstituted, B-type trivacant heteropolytungstates has been described, $P_4W_{30}M_4(H_2O)_2O_{112}^{16-}$, correcting the earlier report of these complexes as " $P_2W_{16}M_2(H_2O)_2O_{60}^{10-"}$ and emphasizing the importance of the direct structural techniques, ³¹P and ¹⁸³W NMR, in heteropolytungstate chemistry. Pope's preparation^{13a} of B- $P_2W_{15}O_{56}^{12-}$ trisubstituted with the higher valent V⁵⁺, B- $P_2W_{15}V_3O_{62}^{n-}$ (n = 9, 10), suggests that both the lower valent cations, $M^{2+} = Co$, Cu, Zn, and the B-type $P_2W_{15}O_{56}^{12-}$ are required to form the B- $P_4W_{30}M_4$ -($H_2O)_2O_{112}^{16-}$ derivatives reported herein. Another significant conclusion is that the " P_2W_{18} " series and " PW_{12} " series ($P_2W_{18}O_{62}^{6-}$, $P_2W_{17}O_{61}^{10-}$, $P_2W_{16}O_{59}^{12-}$, $P_2W_{15}O_{56}^{12-}$ and $PW_{12}O_{40}^{3-}$, $PW_{11}O_{39}^{7-}$, $PW_{10}O_{37}^{9-}$, $PW_9O_{34}^{9-}$) now show a more common chemistry in that only $P_2W_{16}O_{59}^{12-}$ and $PW_{10}O_{37}^{9-}$ are not well-known and do not readily form isolable, M^{2+} -substituted derivatives. It is likely that additional members of this new class of heteropolytungstates will be discovered.¹⁵

Acknowledgment. Financial support was provided by NSF Grant CHE-8018199. The NT-360 NMR was purchased with funds provided by grants from the NSF Instrumentation Division and the M. J. Murdock Charitable Trust. R.G.F. is a Dreyfus Teacher-Scholar (1982–1987) and an Alfred P. Sloan Foundation Fellow (1982–1984).

Department of Chemistry University of Oregon Eugene, Oregon 97403 Richard G. Finke* Michael W. Droege

Received November 15, 1982

^{(11) (}a) There are four possible α or β type^{2b} structural isomers in $P_4W_{30}M_4(H_2O)_2O_{112}$ for a total of $2^4 = 16$ possible isomers. Only four of these, $\alpha\beta\beta\alpha$, $\beta\beta\beta\beta$, $\alpha\alpha\alpha\alpha$, and $\beta\alpha\alpha\beta$, have the C_{2h} symmetry required by the ¹⁸³W NMR data, however. This α,β type of isomerism and why only the $\alpha\beta\beta\alpha$ isomer (Figure 1) is fully consistent with the ³¹P and ¹⁸³W NMR data are discussed next. The isomer shown in Figure 1a can be labeled $\alpha\beta\beta\alpha$. Rotation by $\pi/3$ of both the top and bottom W₃ triads composed of WO₆ octahedra c₁, c₁, and c₂ gives the $\beta\beta\beta\beta C_{23}$ symmetry isomer. In this isomer, the top point in Figure 1A of the WO₆ octahedra labeled c_2 is shifted from the α form, where it is between two corner-sharing WO₆ groups, b_2 and b_1 (Figure 1A), to between the edge-sharing WO₆ groups, b₂ and b₃, i.e. the β form. Another previously unrecognized type of rotational and therefore $\alpha =$ β type of isomerism occurs if both the P₂W₁₅ units shown in Figure 1A are rotated by $\pi/6$ about their individual axes (composed of a line drawn through each of the two PO4 tetrahedra) to give a possible, but as yet unprecedented, ^{11c} C_{2k} symmetry isomer $\alpha \alpha \alpha \alpha$. The fourth possible C_{2k} symmetry isomer is $\beta\alpha\alpha\beta$, and the other 12, lower symmetry isomers, that would be expected to show 16¹⁸³W NMR resonances, are $\alpha\beta\alpha\beta$, that would expect to show the or of the Province testimates, the expectation, $\beta\alpha\beta\alpha$, $\beta\alpha\alpha\alpha$, $\alpha\beta\alpha\alpha$, $\alpha\alpha\beta\alpha$, $\alpha\alpha\beta\beta$, $\beta\beta\alpha\alpha$, $\alpha\beta\beta\beta$, $\beta\beta\alpha\beta$ and $\beta\beta\beta\alpha$. The probable α form³ of the P₂W₁₅O₅₆^{12°} starting material and the fact that the one ³¹P NMR signal of P₄W₃₀Zn₄(H₂O)₂O₁₁₂^{16°} (δ = -14.3) is closer to that for α -P₂W₁₈O₆₂^{6°} (δ = -12.7)⁹ than to that for β -P₂W₁₈O₆₂⁶⁻ (δ = -11 to -11.6)⁹ suggests, but does not prove, that our product is either the $\alpha\beta\beta\alpha$ or $\alpha\alpha\alpha\alpha$ isomer (given that the ¹⁸³W NMR spectrum requires a C_{24} symmetry isomer). The fact that the other, $\delta = -4.31$, ³¹P NMR signal is very close to that for $[PW_9Z_{12}-(H_2O)O_{14}]_2^{10-}$ ($\delta = -4.23$), with its crystallographically determined ^{1b} β form^{11b} of attachment of the trivacant PW₉O₃₄⁹ to the four central $M = Co, Cu, or Zn MO_6$, is most consistent with a $\alpha\beta\beta\alpha$ formulation for $P_4W_{30}M_4(H_2O)_2O_{112}^{16}$ as shown in Figure 1A. (b) To avoid confor P4W30M4(H2O)2O112 fusion, it should be noted β form of attachment of the P₂W₁₅ or PW₉ to the four central MO₆ octahedra is different from the W₃ triad rotational α,β isomerization known for PW₉O₃₄²⁻ that leads to the β -PW₉O₃₄²⁻ label and the α,β isomerization referred to^{1s} in the synthesis of [B- α -PW₉Zn₂(H₂O)O₃₄]₂¹⁰⁻ from B- β -PW₉O₃₄²⁻. A different type of nomenclature to better distinguish these two α,β types of rotational isomerism may be required in the future. (c) The α form of attachment of the P₂W₁₅ to the four central MO₆ octahedra is also less likely to the extent that there are severe steric interactions with the bound H₂O and the bridging oxygen between tungstens a_3 and a_2 (although Figure 1A overemphasizes this steric interaction). We thank Professor Walter Klemperer for bringing this point to our attention.

 ⁽¹²⁾ Anal. Calcd for Na₁₀P₂W₁₆Zn₂(H₂O)₂O₆₀: P, 1.42; W, 67.47; Zn, 3.00. Calcd for Na₁₆[P₂W₁₅Zn₂(H₂O)O₈₆]₂: P, 1.53; W, 68.12; Zn, 3.23. The more sensitive Na analysis (5.27% vs. 4.54%, respectively (found 4.13%)) apparently^{3b} was not previously done.
 (12) (12) Horren⁴U³ SP

 ^{(13 (}a) Harmalker, S. P.; Pope, M. T. J. Am. Chem. Soc. 1981, 103, 7381.
 (b) Knoth, W. H. Ibid. 1979, 101, 759.

⁽¹⁴⁾ Knoth, W. H.; Harlow, R. L. J. Am. Chem. Soc. **1981**, 103, 1865. (15) Possibilities include $[H_x(PW_9O_{34}M_4)_2P_2W_{12}O_{50}]^{x-20}$, $[H_x-(P_2W_{15}O_{56}M_4)_2P_2W_{12}O_{50}]^{x-26}$, or a highly charged, probably insoluble oligomer $[-M_2P_2W_{12}O_{50}M_2-]_n^{10}$.